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Dislocations and Internal Length Measurement in 
Continuized Crystals. I. Riemannian Material Space 
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Distributions of dislocations creating point defects are considered. These point 
defects are described by a metric tensor, which supplements a Burgers field 
responsible for dislocations. The metric tensor depends on the distribution of 
dislocations and defines a Riemannian geometry of the material space of a 
continuized crystal and thus an internal length measurement in this crystal. The 
dependence of the distribution of dislocations on the existence of point defects 
created by these dislocations is modeled by treating the Burgers field as a field 
defined on the Riemannian material space. Field equations, following from 
geometric identities, are formulated as balance equations on this Riemannian 
space and their source terms, responsible for interactions of dislocations and 
point defects, are identified. 

1. INTRODUCTION 

It is known that the occurrence of many dislocations in a crystalline 
solid is accompanied by the appearance of point defects. This may be due, 
for example, to intersections of the dislocation lines; for example, two 
intersecting right (or left) screw dislocations produce a line of interstitials, 
and if one screw is right and the other left, a line of vacancies is formed 
(Frank and Steeds, 1975). The point defects are essentially described by a 
metric tensor which supplements the torsion tensor of a teleparallel connec- 
tion responsible for dislocations (Krtner, 1990; Trz~sowski, 1987). On the 
other hand, dislocations have no influence on local metric properties of the 
crystal structure of the solid (Krtner, 1985). It is usually described by 
assuming that the above-mentioned metric tensor is covariantly constant 
with respect to the teleparallel connection (Trz~sowski, 1987). If the body 
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932 Trz~sowski 

considered is a (three-dimensional) connected manifold g ,  then the telepar- 
allel connections on it are in one-to-one correspondence with globally 
defined vectorial moving frames (Sikorski, 1972). If  ~ = ( E . ;  a = 1, 2, 3) 
denotes a global moving frame and V+=(F~c [~ ] )  is the teleparallel 
covariant derivative (with the connection coefficients F]c[~])  correspond- 
ing to O, then this correspondence is defined by the condition that 

V+E. = 0 ( 1 a) 

Ea(X) = e A (X)OA ( lb)  

where X = (Xa; A = 1, 2, 3) is a coordinate system on ~ .  Thus, the V +- 
covariantly constant metric tensor g .  has the form 

g+ (X)  = g,b Ea(X)  | Eb(X)  (2a) 

gab = gba ---- const (2b) 

E ' ( X )  = ~,~(X) d X  A, e A ( X ) ~ A ( X )  = 5~ (2C) 

and defines an internal length measurement in the body. 
The torsion tensor S[~] of  the teleparallel connection has the form 

S [ ( I ) ]  = SabcEa | Eb | E " 
(3) 

" ~ e n e C S  "t S ~c = A~ , Bc,  S A B c  = r~c j [~ ]  

and can be introduced independently of  this connection (Trz~sowski, 
1987): 

S [ ~ ]  = �9 = E .  | z ~ 

z" = dE a = "Cabc Eb A E" 
( 4 )  

_ C [E., Eb] - Cab Ec 
C _ _  c Cub -- 2S  ~b = -z~ab 

where [u, v] = u o v - v o u denotes the commutator (bracket) of vector 
fields u and v considered as first-order differential operators [e.g., equation 
(lb)]. The triple z .  = (z"; a = 1, 2, 3) of 2-forms z" is called a Burgers f ield 
(Trz~sowski and Stawianowski, 1990), and S[~] can be interpreted as a 
tensorial measure of the dislocation density (Section 3). It is easy to see 
that the global rescaling of the internal length measurement defined by 

~ ~ L  = (EaLab) 
( 5 )  

L = IIL~ ;a ,  b = l, 2, all ~GL+(3)  

where GL+(3) denotes the group of all real 3 x 3 matrices with positive 
determinant, does not change this tensorial measure, i.e., S[OL] = S[~] 



Dislocations in Continuized Crystals. I 933 

(Trz~sowski and Stawianowski, 1990), and therefore we can assume, with- 
out loss of generality, that 

g<~ = g = 6ab E a | E b 

=gab dXA | dX~ (6) 
a b 

gA, = 6,b eA eB 

Finally, we come to the conclusion that the distribution of dislocations in 
a crystalline solid ought to be described by the Burgers field z| considered 
as a geometric object on the material Riemannian space (~, g~,) associated 
with a global moving frame �9 [equation (6)], rather than by the teleparallel 
connection V a' only (Sections 2 and 3). If so, the field equations following 
from geometric identities can be formulated as balance equations on the 
Riemannian space (Section 4). This leads to the identification of source 
terms responsible for interactions of dislocations and point defects created 
by them (Section 4). Note that such an approach to the description of 
dislocations is consistent with any of those field theories that admit the pair 
(g~,, r~) as elementary geometric objects describing simultaneous occur- 
rence of dislocations and point defects in a crystalline solid. For example, 
this is the case of the gauge theory of dislocations based on the Riemann-  
Cartan connection corresponding to ga, (i.e., the general connection metric 
with respect to g~,), and thus taking into account the existence of general 
distributions of point defects not disturbing the local homogeneity of 
continuously dislocated bodies (Trz~sowski, 1993). 

We will use the so-called geometric frame references, i.e., coordinate 
systems X = (X A) such that [X A] = [dX A] = [l], [t3 A = d/~X A] = [I- 1], where 
[/] = cm in the cgs units system. 

2. CONTINUIZED CRYSTALS 

Assume that a stress-free crystalline solid is loaded by boundary 
tractions in the elastic regime. The occurrence of crystalline structure 
defects can be recognized by observing that unloading does not take the 
body back to its original configuration. The unloaded state will thus 
contain a residual stress field. On the other hand, we assume that the stored 
energy is only due to elastic deformation and clearly residual stresses 
cannot be captured by a deformation gradient because these would model 
a body that unloads completely (Lagoudas and Edelen, 1989). In the case 
of dislocated monocrystalline solids we can characterize deformations of 
that unloaded state based on an assumption that the distorted lattice is 
uniquely defined everywhere (e.g., Bilby et al., 1955; Kondo, 1955, 1962; 
Kondo and Yuki, 1958). Namely, following Kondo, one images removing 
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a macroscopically small part of the dislocated body and allowing it to relax 
(by removing all boundary tractions) up to an unstrained state called the 
natural state. The discrete material structure of the natural state of a 
monocrystalline solid coincides with a perfect lattice. Let us consider, in 
order to describe the Kondo gedanken experiment explicitly, a reference 
configuration ~ = x(~), r :  ~---}E3-diffeomorphism, being an open and 
connected subset of the three-dimensional Euclidean point space E 3 
(configurational space of the body :~). We will consider a distinguished 
diffeomorphism x called, as well as the image ~ of the body, the reference 
configuration (of the body). Then, the body :~ and the coordinate system 
X = (X A) on it can be identified with ~ and the coordinate system 
X~ = X o x -  1 on ~ ,  respectively. Let X = X(P) denote Lagrange coordi- 
nates of a point P ~  ( = ~  c E 3) and let dX A denote the distance 
between points P, Q eg~. If 6xi(X) denotes the distance between these 
material points in a deformed state 2(:~), 2: ~ ---} E3-diffeomorphism in E 3, 
and 6~(X)  is the same relaxed material element, then the relations 

6xi(X) = FiA(X) dX ~ 

~ a ( x )  = Pa A (X)  d X  A (7) 

6xi(X) = 8 'o (x )  ~ o ( x )  

define the so-called distortions: total (FtA), plastic (Paa), and elastic (Bi~). 
It follows that 

FiA (X) = Bio (X)P% (X) 

FiA(X) = 2Ca(X) (8) 

where (2i(X), i = 1, 2, 3) denotes a coordinate description of the deforma- 
tion 2 in Cartesian Eulerian coordinates (x') on E 3 and Lagrange coordi- 
nates (X a) on ~ (Trzesowski, 1993). Repeating the Kondo cutting- 
relaxation procedure for many macrosopically small elements of the body, 
we obtain the collection of relaxed material line elements 6~(X(P)), P ~ ,  
defining a moving coframe ~* = (E~; a = 1, 2, 3) by 

E~ = ~ ~  (9) 

that is, 

E"(X) = ~A (X) dX A 

~a (X) = P#A (X) ( 1 O) 

The condition that the collection of relaxed line elements cannot be 
captured by a deformation gradient (of a global deformation of the 



Dislocations in Continuized Crystals. I 935 

reference configuration) means then that, for at least one 1-form E a, one 
should have 

z a = d E ~ O  (11) 

If lattice defects are absent, i.e., ra _~_ O, a : l ,  2 ,  3 ,  then the natural state 
can be obtained by a global deformation of the reference configuration or, 
equivalently, there exists a Cartesian Lagrange coordinate system r = (4 a), 
r  r on ~ such that 

Ea=d~ a 
(12) 

~A(x) = ~,~A(x) 

and in the internal length measurement metric tensor g [equation (6)] has 
the form 

g = ~ab d~a@ d~ b 
_ . b ( 1 3 )  

The nonintegrability condition (11), considered as a representation of the 
mutual discrepancy of macroscopically small relaxed line elements 6~ ~, 
ought to be treated as a continuous limit neglecting the finiteness of the 
lattice spacing of a dislocated crystalline solid. We can think, for example, 
of some limiting process in which lattice constants of a Bravais lattice 
(describing the discrete material structure of the natural state) decreases 
more and more but the lattice rotational symmetries as well as the mass per 
unit volume and the content of defects remain unchanged. The resulting 
body, called a continuized crystal (Kr6ner, 1984, 1986), retains locally the 
most characteristic properties of the original crystal, namely the existence 
of three crystallographic directions at each point, the rotational equivalence 
of triads of these directions, and the existence of internal length measure- 
ment scales along these directions. Let us consider a moving frame 

= (E~; a = 1, 2, 3) of base vectors parallel to the local crystallographic 
directions of a continuized crystal as the one defining the relaxed material 
line elements of the Kondo gedanken experiment according to equations 
(10) and (11) and the duality condition (2c). Then, from the concept of the 
continuized crystal there follows the existence of local rotational uncertainty 
to select the moving coframe ~* = (Ea; a = 1, 2, 3), i.e., 1-forms E ~ are 
defined up to the transformation E~(X)~ E'"(X), where 

E'~(X) = Q"~ (14) 

Q =  Ilao ll: ~ G = S O ( 3 )  

where G is the material symmetry group of a (maeroscopically) homoge- 
neous crystalline solid and SO(3) denotes the group of all proper 3 x 3 
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orthogonal matrices (Trz~sowski, 1993). The group G can be identified 
with the group of point symmetries of an ideal Bravais reference lattice 
(defining a discrete monocrystalline structure of the solid in its reference 
configuration ~ )  or G can be identified with the group of symmetries of 
a crystal texture. The pair (~, G) is called a Bravais moving frame 
(Trz~sowski, 1993). Note that according to the identification (9) of 1-forms 
E" with the relaxed material line elements 6~ a, the internal length measure- 
ment metric tensor g [equation (6)] gives us information that dislocations 
have no influence on the local metric properties of a continuized crystal 
(see Section 1). Thus, the triple (~, G, g) represents the short-range order of 
a dislocated continuized crystal. 

It ought to be stressed that the base vectors Ea, a = 1, 2, 3, do not 
describe translational symmetries of an ideal local lattice (even in the case 
of a monocrystaUine solid). This is because in a continuized crystal 
translational symmetries are lost and only rotational symmetries (of the 
considered crystalline material) are preserved. However, the vector fields E~ 
define (in like manner as in the case of a discrete monocrystalline structure) 
internal length measurement scales along local crystallographic directions. 
The relaxed line elements 5~"(X), X = X(P), P ~ ,  corresponding to these 
scales according to the identification (9) are translated and rotated with 
respect to one another and fail to mesh to form a Euclidean length 
measurement. Their translational discrepancy is described by the noninte- 
grability condition (11). Their rotational discrepancy is represented by 
(infinitesimal) relative rotations of local crystallographic directions and 
thus can be described by the so-called Ricci coefficients of rotation coc"b 
defined by (Trz~sowski, 1993) 

g b V E,, = co. | Eb 

b 
co  ab = co  c ab  E c = - -  CO a (15 )  

co, = (co,%) ~so(3 )  

where co b are connection 1-forms of the Levi-Civita covariant derivative V g 
corresponding to the metric tensor g, and so(3) denotes the Lie algebra [of 
the Lie group SO(3)] consisting of 3 x 3 real antisymmetric matrices 
representing infinitesimal rotations. 

3. DISLOCATION DENSITY TENSOR 

The occurrence of dislocations breaks the long-range order of a 
crystalline solid. It manifests itself in the existence of different short-range 
orders in macroseopically small neighborhoods of different points of the 
continuized crystal (see Section 2), and can be quantitatively measured by 
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the so-called Burgers vector corresponding to a (macroscopic) closed 
contour 7 in ~ .  Let us consider, in order to formulate a definition of this 
vector, a family of local diffeomorphisms 2 = {2p: Up--E3; P ~ }  where 
E 3 is the configurational three-dimensional Euclidean point space and 
{Up, P~9~} is an open covering of the reference configuration ~ =  
~@~ c E 3 (see Section 2) such that 

d2p(Ea)(P) = Ea ~/~3 (16) 

where (@, G), * = ( E a )  is the Bravais moving frame (Section 2), and 
(E~ ; a = 1, 2, 3) is an orthonormal base of the Euclidean vectorial space ~3 
of translations in E 3 corresponding to a Cartesian coordinate system (~a) 
on E 3. Let V be a closed contour in ~ passing by the point P ~  and with 
its tangent vector field i: 

~: <~,/~> -+~, ~(~) = ~(/~) = p 

(17) 
$(t) = ~"(t)Ea(?(t)) ~ Tr<o(~), t~(~, fl) 

where TQ(B) (~= if3) denotes the space tangent to the differential manifold 
~ i n  Q. 

Denoting 

~2( t  ) = f)a(t)~ a ~j~3 (18) 

we can define the curve y). !n E 3 by 

? ; :  <0~,/~> -'+ E 3 

(19) 

possessing ~. as its tangent vector field. The curve y can be considered as 
a continuous counterpart of the so-called Burgers circuit--an atom-to- 
atom path in a crystal containing dislocations, which form a closed loop 
(e.g., Hull and Bacon, 1984). Then the curve 7~., being an unclosed contour 
in E 3, constitutes a counterpart of the same circuit in a perfect crystal. 
Consequently, a vectorial measure of this unclosing defined by 

) 

can be called the Burgers vector (like the one completing the circuit in a 
perfect crystal). Note that here the Burgers vector is a closure running from 
the start of the circuit to its finish; frequently, the opposite convention of 
the Burgers vector orientation is taken (e.g., Hull and Bacon, 1984). It 
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follows from equations (17)-(20) that 

b a(7) = E ~ = ~ ( t )  dt 

(21) 
[b~(y)] = [l], [l] = cm 

Let us consider the reference configuration ~ = ~ (see Section 2) as 
a Riemannian manifold endowed with the internal length measurement 
metric tensor g [equation (6)], and let E c ~ be a two-dimensional compact 
and oriented Riemannian submanifold of (g ,  g) (a surface) possessing the 
closed contour ~ as its boundary. Then Stoke's theorem states that (Von 
Westenholz, 1978): 

b~(y) = f~ r ~ (22) 

where [see equations (3), (4), and (11)] 

z ~ = �89 aBC d X  e ^ d X  c 

b c a a 
Z~Bc = e s e c z  bc = 2dt~ecl (23) 

[ , q  = [11, [~~ = [ l - ' ]  

and 

z z a = �89 f~  T"Bc dS  Bc 

d S  Bc = l B c d S ,  l Bc = eBC~ (24) 

lo =g~d ~, lAlA= 1, [1o1 =[11 

where dS, [dS] = [F], denotes the surface element of E normal to the unit 
vector ! = lada and [equation (6)] 

e a B c =  g -I/ZEASC (25a) 

g = detllg~ II = e ~  , 2 ,  e~ = de@all (25b) 

where e anc denotes the permutation symbol. Introducing on the Rieman- 
nian manifold (~, g) the so-called dislocation density tensor a by 

O~ = {xAB~ A @ ~B 

O~SA I_A -COS = e  A-a (26) 
-~- ~1, C D  r , " ~ A B c  a 1, B C  

[~A~] = [ l - ' ] ,  [a] = [1-31 



Dislocations in Continuized Crystals. 1 939 

and defining the vector field b = bac3A by 

PbA = l~176176 (27) 

[p] = [1-  2], [b 4] = [l] 

where p is a scalar independent of the choice of 1, we obtain that 
t~ 

b"(y) = | pb adS 
l 

d z (28) 
b =  baE,, b a =eAb~ 11 

Therefore, the vector field b can be interpreted as a local Burgers vector 
corresponding to a dislocation line tangent to the I direction and p can be 
interpreted as the so-called scalar density o f  dislocations, i.e., the length of 
all dislocation lines included in the volume unit (De Witt, 1973). Note that 
here the volume element dV is Riemannian: 

dV(X)  = g(X)  1/2 d3X (29) 

where d3X is the Euclidean volume element. Representing the tensor field 
in the form 

= ~abE. | = ~ |  

~a o~baE b, O~ ab a b AB = = eA es~ (30) 

[~~ = [ l -~ ] ,  [ E A  = [l - I ]  

we can rewrite (27) as 

pb = 1~ (31) 

Let us observe that if we introduce the Burgers covector b*@) by 

b*(~)  = bo(~)~ ~ 
(32) 

ba(v) = fi~,.bc(v), (~, ~b) --6a-- b 

where (., .) denotes the scalar product in the Euclidean vectorial space ~3, 
then 

i l l  

ba(~) = t Ta 

(33) 
"ga = 6ab zb  = Ea~, ( E a ,  Eb)g  = (~ab 

where (., .)g denotes the scalar product in the Riemannian manifold (:~, g). 
Thus, the tensor field ~: [or, equivalently, the torsion tensor S[~]; equations 
(3) and (4)] can be also interpreted as a measure of the dislocation density. 
The tensorial measures ~ and ~ or the dislocation density can be mutually 
related by means of the Hodge operator �9 on the Riemannian manifold 
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(8,  g). Namely, it follows from equations (4) and (30) and from the 
definition of the Hodge operator (e.g., Von Westenholz, 1978) that 

z a = *~a (34a) 

~a = , .ca = o~baEb ' E~ = 5 a b E  b (34b) 

where [~'q = [1], and thus 

~ba ~-- 12~Capqepqb 

(35) 
Tabc ~ O~Paepbc 

where e "be* e ab" [see equations (6) and (25)] is the permutation symbol. 
Introducing designations 

~ab ~ o~(ab), t. ~- Tbba (36) 

we obtain that 

and 

0~[ ab] ~_ l t c e c a b  

t a = eabcO~ bc 
(37) 

a da  a 
Z bc = ebcd] ) - -  t[bf~c] 

[y.b] = [t.] = [ l- ' ]  (38) 

Note that there exists a field Q = I[a~b I1: 50(3) of local rotations such 
that if 

�9 Q = (%), e. = EbQb. 
(39) 

�9 *Q = (e"), e" = Qb"E b 

where [Io.bl[ = QT, then 

= ~ " b E .  ~) E b = )."e. | e .  

t = t .E" = #e 3, [#] = [2"] = [l -1] 

and so, in the base (e.), 

x 0 21 22 # 

(40) 

(41) 

Let us consider a line in the Riemannian manifold (8,  g), with its unit 
tangent vector field i = I"E., as a dislocation line with its local Burgers 
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vector b = baE~, i.e., [see equations (30) and (31)] 

p b  a = lbo~ ba 

(42) 
l,,I ~ = 1, la = 3 a b l  b 

A slip plane of a dislocation is defined as a plane containing both the 
dislocation line and Burgers vector of the dislocation (e.g., Hull and Bacon, 
1984). So, a plane re(l, b) containing vectors ! and b can be interpreted as 
a loca l  sl ip p lane .  This means that if n = n~ # o is a vector normal to 
~(!, b), then 

b an a = O, lana = 0 
(43) 

n a = r b 

For example, if [see equations (36) and (37)] 

t a = l t n a ,  na nb = 1 
(44) 

7~bnb = O, Pna  = 0 

where p is a scalar, then the condition (43) is fulfilled. It follows from 
equations (36) and (42) that 

pb"l, ,  = ~a~l,~lb (45) 

The considered line can be interpreted as an edge d i s loca t ion  line if (Hull 
and Bacon, 1984). 

bala = O, h a ~ 0 (46) 

or, equivalently, if 

a~lals = 0 
(47) 

l a P =  1, ba:~0 

A s c r e w  d i s loca t ion  line can be defined by the condition 

b ~ = t l l  ~ (48) 

or, equivalently, by the demand that I is a left eigenvector of the dislocation 
density tensor a with an eigenvalue v: 

160~ ba = vl a 
(49) 

l a l ~ =  1 

which means that 

v = p n  = E ( n ) b p  = ~a~ lo lb  

E(q)=sgnq,  p > 0 ,  b > 0  

rl 2 = b z = (b, b)g = b " b , ,  l a p  = 1 

(50) 
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The condition (50) admits screw dislocations with the same line sense but 
opposite Burgers vectors: they are the so-called right-handed screw if 
E(r/) = 1 or left-handed screw if E ( r / ) = -  1, and these are also physical 
opposites of each other because they annihilate and restore a perfect crystal 
if brought together [e(r/) = 0] (Hull and Bacon, 1984). It follows from the 
above definitions that in the representation (41) of the dislocation density 
tensor a, diagonal elements correspond to screw dislocations whereas 
nondiagonal elements correspond to edge dislocations. 

We see that while local slip planes are uniquely defined for edge 
dislocations, this is not the case for screw dislocations. However, if a screw 
dislocation lies in the slip plane of the edge dislocation, then the same plane 
can serve as a slip plane for the screw. From this we can proceed to the 
representation of a dislocation which is of mixed edge and screw character 
and lies along a path in the slip plane (Frank and Steeds, 1975). Namely, 
let us write the dislocation density tensor a "b in the following form [see 
equations (36) and (37)]: 

a,,b = ?.b + fl.b 
(51) 

f lab  = �89 = _ f i b . ,  ~)ab = ?ba  

and let l" denote an eigenvector of the symmetric tensor field 7 "b with its 
eigenvalue v, i.e., 

'~abl b = v P  
(52) 

1. l b = 1, l~ = (~ab lb 

The local Burgers vector b" corresponding to l" is defined by (42). If we 
define vectors b" and b" by 

5" e 

p s b " = t b ?  ~ 
(53) 

where pe and p, are positive scalars, then 

eb~ = o  
(54) 

b" = ~ll", rl = v /ps s 

and 

o, b~ 
(s5) 

cs = P s / P ,  c~ = P e / P ,  C, + C~ = 1 

It follows from (54) that a dislocation line possessing l" as its unit tangent 
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vector has the edge as well as screw character described by pairs 

(Pe, b~) and (Ps, b a) 

respectively. Thus, the same line has a mixed (edge and screw) character 
described by the pair (p, ha), and 

p b  a = v l  a + I~m a 

m ~ = �89 c'ba, t,. = #n,. (56) 

n % . = l ,  /~m~ = O, # > 0  

If 

l , n  a = 0 (57) 

then n(l, b) is the local slip plane containing the direction 1 as welt as the 
local Burgers vectors be, bs, and b. 

4. BALANCE EQUATIONS 

Let f~ c ~ be a three-dimensional regular region with a regular closed 
boundary Z. The vector field F(s defined by [cf. equations (20)-(23)] 

~(y.) = F~ 
(58) f ,  

= I~ T~ Fa(s 

is called the F r a n k  v e c t o r  (Kadi6 and Edelen, 1983). It follows from 
equations (24), (30), (34), (58) and from the divergence theorem of Gauss 
(Von Westenholz, 1978) that 

F~ = f, (,~ = f, divg a~ dV (59) 

where d V  denotes the Riemannian volume element of (~, g), d S  denotes the 
surface element of Y~ treated as a 2-dimensional submanifold of (~, g), ! is 
the unit outer normal vector field on E, and 

divg ~t ~ = --50~a = V g a  s~ 

= g - ~/2~s ( g  ~/2~ ~a) ( 6 0 )  

~ = 0~A~0a, g = det[lgAB ]1 

where V g denotes the Levi-Civita covariant derivative corresponding to g, 
and 6 denotes the codifferential operator on (~,  g), i.e. (Von Westenholz, 
1978) 

5~" = - ,  d �9 ~" ( 6 1 )  
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where �9 denotes the Hodge operator. Since dr a = 0 [see (4)] we obtain from 
equations (34), (60), and (61) that 

divg ~a = 0 (62) 

i.e., the Frank vector vanishes. It is a conservation equation in the 
Riemannian space (~, g), equivalent to the following balance equation in 
the Euclidean space E 3 [see equations (25b) and (60)]: 

t?Bct sa = ja  (63a) 

ja = sB~ B~, s~ = ~ In e.  (63b) 

where it was assumed that e .  > 0 (i.e., we consider an oriented Bravais 
moving frame). If g is a flat metric, then (63) reduces, in Cartesian 
Lagrange coordinate systems (X'~), to the following form: 

~3~ ~ * 0 (64) 

which is usually interpreted as stating that lines of dislocations do not 
terminate within the crystal (Kondo, 1955; Kr6ner, 1960). Consequently, 
the case j a =  0 means that dislocations must either form closed loops or 
branch into other dislocations (Hull and Bacon, 1984). However, in general 
the term j" does not vanish, and thus this source term can be interpreted as 
representing the existence of dislocation lines terminating within the crystal. 
This is possible, e.g., due to the appearance of point defects created by 
dislocations (see Section 1) or due to the existence of grain boundaries in 
the considered dislocated macroscopically homogeneous body (see Section 
2). The form of the source term j" [equation (63b)] shows that it is 
produced by the variableness of the material volume element [equation 
(29)]. Consequently, we can distinguish volume-preserving Bravais moving 
frames defined by the condition that there exists a smooth field 
L--Ilz~ I1: ~SZ(3)  of local transformations and an orthonormal base 
(ca) in the Euclidean space/~3 such that [independently of the choice of the 
Lagrange coordinate system X = (xA)] at each point of the body [identified 
with its distinguished reference configuration and thus with the identifica- 
tion Te(~) ~/~3, p ~ ;  see Sections 2 and 3] 

E,,(X)L"b(X) = eb (65) 

where SL(3) denotes the group of 3 x 3 unimodular matrices. It follows 
from the condition (65) [and from equations (6), (25b) and (63)] that for 
the volume-preserving Bravais moving frame e~ * 1, and thus j ~ *  0 in 
Cartesian Lagrange coordinate systems X = (X A) although, in general, g is 
not a flat metric tensor. For example, a type of point defect called "point 
stacking fault" does not change the volume (Kr6ner, 1990). 
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It follows from equations (4), (6), and (15) that 

~abc ~ (f)cab - -  O)bac 

Therefore 

and [see equation (63b)] 

where 

t a = "CCca = --(OcCa 

V g E  a = t, t = ta E~ 

t a =  - - V g e  a = S ~ - O A e  A 

s~ = eAsA  = ~ In e,~ 

(66) 

(67) 

(68) 

0a =eA~A 

For example, if the Bravais moving frame (~, G) is volume-preserving, 
then (in Cartesian Lagrange coordinates) 

~A~ Aa * 0, ta * -~Ae A (69) 

IleAl]: ~ ~ SL(3) 

Note that from equations (38), (60), and (67) it follows that equation (62) 
also can be written in the following form: 

3b ~ba = 2q ~ 
(7O) 

q" = o~at = 7abtb 

where t = t~Ea,  t ~ = 6"btb. The vanishing of the field q = q"E~ means the 
existence of a distinguished distribution of local slip planes: namely those 
normal to the vector field t [see equations (42)-(45)]. For example, the 
vector field q vanishes if the distribution of dislocations is uniformly dense 
( i .e . ,  z~b,. = const) (Trz~sowski, 1987, 1992). 

It follows from equations (1), (4), and (66)-(68) that the incompati- 
bility of the distribution of relaxed macroscopically small material line 
elements (Section 2) has the curvature (of the Levi-Civita covariant deriva- 
tive V g) as well as the torsion (of the teleparallel covariant derivative V ~) 
character. Thus, from this point of view, the dislocation density tensor a 
represents the torsion incompatibility related to the Riemannian volume 
element, and the balance equation (63) describes the influence of the 
curvature incompatibility on the distribution of dislocations. An equation 
describing the influence of a distribution of dislocations on the curvature 
incompatibility can be formulated with the help of the curvature identity 
for the Riemannian curvature tensor corresponding to the metric g. 
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Namely, for the Riemannian curvature 2-form f~g we have the following 
representation (Trz~sowski, 1993): 

~ = eab~R ~ 

R ~ lo~ ~.a = 6"Pepb~ (71) = ~ bda.~ A E d, eabc 

_ _ ! 0  oPq c Rabc a = 6apR,,b,.p RCbd  = 2a,,bdpqr.. 

where R~b,. u are components [with respect to the moving frame (I) = (E,)] of 
the Riemannian curvature tensor. Let us introduce the 1-forms 
0",  a = 1, 2, 3 by [see equation (34b)] 

O a  -.~ __~ R "  = |  b (72) 

where 

Thus 

|  = �88 R ~q 

- -  l~bpqoars R ~_ G a b  
- -  ~ ~ ~ Lpqr s 

(73) 

Rabcd = e a b p e c d  q {~Pq 

and the correspondence between tensors G ab 
Moreover, the Ricci tensor R.b has the form 

R .  b = Rc,~ b c = | . b  - -  O O  ab 
(75) 

|  = 3 a c f b d  |  | = 3a b |  

and the tensor | Covers with the so-called Einstein tensor: 

G a b  = R a b  - -  I R 3 a b  (76a) 

R = 3"bR.b = -- 2 0  (76b) 

From the curvature identity (Trz~sowski, 1993) 

VgR"  = dR  a + o9~ ^ R b = 0 (77) 

we obtain [taking into account (15)] that 

* d R  ~ =  - 6  * R ~ = 6 0 "  
(78) 

6 0 "  = o%~,,0 b" 

where 

6 O" = V~ 0 Ba = - divg ~a 

(74) 

and R~bcd iS one-to-one. 

and we have denoted 

(79) 

~" = Ob"Eb, 0 B" = e S O  b" (80) 
b 
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Since the Levi-Civita covariant derivative V g = (co~) [see (15)] is torsion- 
free, i.e. (Trz~sowski, 1993) 

we obtain that 

d E "  + o9~, ^ E b = 0 (81) 

~Ob"c 0 '~c = 5"d*PcdOp 
(82) 

~)a b = abe 0 ac 

and from equations (35), (78), and (79) we obtain the following balance 
equation on the Riemannian manifold (~, g): 

divg ~" = a" (83a) 

f fa = eabcObd~c a, ab a = 6bcO~ ca (83b) 

equivalent to the well-known identity for the Einstein tensor (Schouten, 
1954) 

V~ O A s  = gACV~ O c s  = 0 

O A B  = ea A b B Oab (84) 

It follows from (60) with sr B" changed for O sa that (83) can be written also 
in the following form: 

OBO s" = r" 
(85) 

r"  = o'a "}- S B O  Ba 

where ss is given by equation (63b). 
We see, comparing the form of source terms j" and r" appearing in 

equations (63) and (85), respectively, that the variableness of the (Rieman- 
nian) material volume element is the factor responsible for the mutual 
influence of the torsion and curvature incompatibilities [see remarks pre- 
ceding (71)]. On the other hand, it is well known that the most important 
contribution of the interaction between a point defect and a dislocation is 
usually due to the distortion of the point defect produces in the surround- 
ing crystal (e.g., Hull and Bacon, 1984). For vacancies or for interstitials 
located along local crystallographic directions (see Section 1) this distortion 
can be treated as possessing a spherical symmetry (Kr6ner, 1990). There- 
fore, in such particular cases, the variableness of the material volume 
element can be identified as a geometric factor responsible for interactions 
between dislocations and point defects created by them. However, the 
action of an interstitial can well be anisotropic, and then the above 
identification may be an approximation of the response law whose deriva- 
tion requires energetic considerations and therefore goes beyond the 
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presently employed differential geometry (Kr6ner,  1990). The discussed 
variableness of the material volume element can be dependent also, in the 
case of a dislocated macroscopically homogeneous body, on the existence 
of grain boundaries on the microlevel. However, the way these boundaries 
influence interactions between dislocations and point defects is not yet 
known. Note also that even in the case of  a volume-preserving Bravais 
moving frame [equations (65) and (69)], dislocations influence the curva- 
ture incompatibility: namely through the source term a a [equations (83b) 
and (85) with sb = 0]. 

5. FINAL REMARKS 

If (O, G), �9 = (Ea), is a Bravais moving frame, then the moving frame 
is defined up to local rotations belonging to the material symmetry group 

G c SO(3) of the considered crystalline solid [see (14)]. Therefore, a field 
theory of  continuous distributions of dislocations should be invariant 
under the local action of  the group G. For example, this invariance can be 
taken as a starting point of the gauge theory of continuously dislocated 
crystalline solids (Trz~sowski, 1993). Consequently, the existence of the 
conservation equation (84) for the Einstein tensor O~ = | 1 7 4  b sug- 
gests the physical importance of cases when the invariance condition 

0 0 0  = O~ 
(86) 

Q: ~ G c S O ( 3 )  

is fulfilled. If  G is a gauge group, then G = SO(3) (three-parameter Lie 
group of Euclidean rotations) or G = G(n) (one-parameter Abelian Lie 
group of all Euclidean rotations about a fixed axis parallel to a vector n) 
(Trz~sowski, 1993). For such symmetry groups the invariance condition 
(86) means that [see (6)] 

0 0  = /~1 n | n + 22g ~ 

(n, n)g = nan a = 1 (87) 

n = naEa, n = n~E  a, n .  = Oab n6 

where 21 and 22 are scalars for G = G(n), and 2~ = 0 for G = SO(3). The 
Ricci tensor R,~ = R ~ b E ~ |  E b defined by (75) has then the form 

R,~ = ,~1 n |  + )~3go 
(88) 

where 23 =cons t  for G = SO(3). Equation (84) reduces then to the con- 
dition 2z = const if G = SO(3) or, if G = G(n) and n is a unit vector field, 
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to the form 

0n()- 1 d- 22) q- '~1 divg n = 0 
(89) 

(n, n)g = nan  a = 1, c~, = naOA 

The form (88) of the Ricci tensor R .  can be associated with the 
existence of slip surfaces (i.e., surfaces with their tangent planes being local 
slip planes; see Section 3) invariant under the action of isometrics of the 
material space (~, g,~). Namely, the following theorem (with slightly 
changed designations) is valid. 

Theorem.  (Bona and Coll, 1992). The necessary and sufficient condi- 
tion for an internal length measurement metric tensor g~, to admit a 
three-parameter Lie group G3 acting on two-dimensional orbits as the 
maximal isometry group is that the Ricci tensor R .  be of the form (88) 
with the unit eigenvector n of Ra, fulfilling the condition 

Vgn = ~(g. -- n | n) (90) 

and satisfying 

d(21 + ~-3) A n = d~, 3 A n = 0 (91) 

where d(2L + 23) and d23 do not vanish simultaneously. The orbits of the 
group G3 action on (~,  go) will then be constant-curvature surfaces orthog- 
onal to the vector n. Moreover, n must be geodesic. 

It follows from equations (76b) and (88)-(90) that the factor ~ is 
given by 

n At3~ (23 -- 2L ) = 4~;h (92) 

and the 1-form n is closed: 

dn = 0 (93) 

Thus, at least locally, n = dq~, i.e., the orbits of G3 are (constant-curvature) 
surfaces of the form ~0 = const. Moreover, the group G 3 is locally isomorphic 
to SO(3) (positive curvature surfaces), S 0 ( 2 ,  1) (negative curvature sur- 
faces), or E(2) (zero curvature surfaces), which denote the 3-dimensional 
rotation group, the 3-dimensional Lorentz group, and the 2-dimensional 
Euclidean group, respectively. If, additionally, the condition (44) is fulfilled, 
then the orbits of the group G 3 action can be interpreted as constant-curva- 
ture slip surfaces in a transversally isotropic, continuously dislocated crystal- 
line solid. In this case the balance equation (70) reduces to the condition 

~bO~ ba = 0 (94) 

For isotropic, continuously dislocated crystalline solids, the invariance 
condition (86) with G = SO(3) should be considered. The Ricci tensor R .  
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then takes the form (88) with 21 = 0 and 2 3 -~-const.  It corresponds to the 
condition that g.  admits a six-parameter isometry group G 6 and 
G 6 ~ SO(4) ,  G 6 ~ E(3), or G 6 ~ S O ( 3 ,  l )  according to the  c o n d i t i o n s  
23 > 0, 23 = 0, or 23 < 0 (Bona and Coil, 1992). Consequently, the materia l  
space (:~, g . )  has a constant curvature K and thus there is such a 
conformally Euclidean space that there exists (at least locally) a Cartesian 
Lagrange coordinate system X = (X A) such that (Sikorski, 1972) 

g a s  = tr  26As 

x = x ( r )  = 1 + ( K / 4 ) r  2 > 0 (95)  

K = 23/2 , r 2 = (~ABXAX B 

For example, a Bravais moving frame defined by 

eA(x) * x(r(X))LAa(X), [ILAa (X)II ~SO(3) (96) 

defines a material space of the constant scalar curvature K. 
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